Uncertainty Propagation Using Probabilistic Affine Forms and Concentration of Measure Inequalities
نویسندگان
چکیده
We consider the problem of reasoning about the probability of assertion violations in straight-line, nonlinear computations involving uncertain quantities modeled as random variables. Such computations are quite common in many areas such as cyber-physical systems and numerical computation. Our approach extends probabilistic affine forms, an interval-based calculus for precisely tracking how the distribution of a given program variable depends on uncertain inputs modeled as noise symbols. We extend probabilistic affine forms using the precise tracking of dependencies between noise symbols combined with the expectations and higher order moments of the noise symbols. Next, we show how to prove bounds on the probabilities that program variables take on specific values by using concentration of measure inequalities. Thus, we enable a new approach to this problem that explicitly avoids subdividing the domain of inputs, as is commonly done in the related work. We illustrate the approach in this paper on a variety of challenging benchmark examples, and thus study its applicability to uncertainty propagation.
منابع مشابه
Linear Time Varying MPC Based Path Planning of an Autonomous Vehicle via Convex Optimization
In this paper a new method is introduced for path planning of an autonomous vehicle. In this method, the environment is considered cluttered and with some uncertainty sources. Thus, the state of detected object should be estimated using an optimal filter. To do so, the state distribution is assumed Gaussian. Thus the state vector is estimated by a Kalman filter at each time step. The estimation...
متن کاملMultidimensional parallelepiped model—a new type of non-probabilistic convex model for structural uncertainty analysis
Non-probabilistic convex models need to be provided only the changing boundary of parameters rather than their exact probability distributions; thus, such models can be applied to uncertainty analysis of complex structures when experimental information is lacking. The interval and the ellipsoidal models are the two most commonly used modeling methods in the field of non-probabilistic convex mod...
متن کاملRigorous verification, validation, uncertainty quantification and certification through concentration-of-measure inequalities
We apply concentration-of-measure inequalities to the quantification of uncertainties in the performance of engineering systems. Specifically, we envision uncertainty quantification in the context of certification, i. e., as a tool for deciding whether a system is likely to perform safely and reliably within design specifications. We show that concentration-of-measure inequalities rigorously bo...
متن کاملSOME PROBABILISTIC INEQUALITIES FOR FUZZY RANDOM VARIABLES
In this paper, the concepts of positive dependence and linearlypositive quadrant dependence are introduced for fuzzy random variables. Also,an inequality is obtained for partial sums of linearly positive quadrant depen-dent fuzzy random variables. Moreover, a weak law of large numbers is estab-lished for linearly positive quadrant dependent fuzzy random variables. Weextend some well known inequ...
متن کاملOn Analytical Study of Self-Affine Maps
Self-affine maps were successfully used for edge detection, image segmentation, and contour extraction. They belong to the general category of patch-based methods. Particularly, each self-affine map is defined by one pair of patches in the image domain. By minimizing the difference between these patches, the optimal translation vector of the self-affine map is obtained. Almost all image process...
متن کامل